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Abstract—Audiologists have devised a battery of clinical tests
to measure auditory abilities. While these tests can help deter-
mine the candidacy of patients for amplification intervention,
they do not accurately predict the degree to which a patient
would benefit from using a hearing aid (i.e., the hearing aid
outcome). Measuring hearing aid outcomes in the real-world is
challenging as it not only depends on a patient’s auditory abili-
ties, but also on auditory contexts that include characteristics of
the listening activity, social context, and acoustic environment.
This paper explores the problem of creating predictive models
for hearing aid outcomes that incorporate information about
auditory abilities, hearing-aid features, and auditory contexts.
Our models are built on a dataset collected using a mobile
phone application that measures auditory contexts and hearing
aid outcomes using Ecological Momentary Assessments. The
use of a mobile application allowed us to collect fine-grained
hearing aid outcome measures in different auditory contexts.
The dataset includes 5671 surveys from 34 patients collected
over two years. Our analysis focuses on identifying the features
necessary for predicting hearing aid outcomes in different
clinical scenarios. Most importantly, we show that models
that only included measures of auditory ability as features
are cannot predict the hearing aid outcome of a patient with
accuracy better than chance. Incorporating information about
auditory contexts increases the prediction accuracy to 68%.
More excitingly, accuracies as high as 90% can be achieved
when a small amount of training data is collected from a patient
in-situ. These results suggest that audiologists could prescribe a
mobile phone application at the time of dispensing the hearing
aid in order to accurately predict a patient’s likelihood of
becoming a successful and satisfied hearing aid user.

I. INTRODUCTION

Hearing aids (HAs) are the primary method for treating

the 11.3% of Americans [18] who suffer from sensorineural

hearing loss. Regular use of HAs has been shown to improve

communication and avoid the negative effects of hearing loss

that include anxiety, isolation, paranoia, and depression [22],

[21]. Patients that are candidates for amplification interven-

tion, however, experience different levels of satisfaction with

the use of HA in daily life. Patients who are dissatisfied tend

to use HAs less frequently limiting their effectiveness [2].

A recent survey indicates that only 59% of HA users are

satisfied and regularly use their HAs [14].

Providing audiologists with the ability to identify patients

at risk of having poor HA outcomes would help improve

the low satisfaction rates of HA users. In the best case,

HA outcomes should be predicted from standard measures

that are already collected during the battery of tests a

patient undergoes to determine his/her candidacy for hearing

amplification. Such an approach would be reasonable if a

strong relation between measures of auditory ability and HA

outcomes existed. Unfortunately, this remains an elusive goal

as most of the existing literature points towards the existence

of only a weak relationship between auditory ability and HA

outcomes [13].

Measuring HA outcomes in the real world is particularly

challenging since aside from a patient’s auditory abilities

other factors contribute to a successful HA outcome. HA

outcomes are known to depend on auditory contexts, which

include the type of listening activity, social context, acoustic

environment, and HA configuration. Unfortunately, a major-

ity of existing studies do not capture the auditory contexts

in which HAs are used since it would be impractical to

do so using retrospective self-reports. A key novelty of this

work is the improved methodology that we use to assess

HA outcomes. We used a mobile phone application called

AudioSense to collect data in-situ [9]. AudioSense period-

ically prompts a patient to describe the auditory context in

which he/she is and the perceived performance of the HA in

that context. Our dataset includes 5671 surveys completed

by 34 patients using four HA configurations collected over

the past two years. Additionally, the auditory abilities of

each study participant are evaluated using two standard

hearing assessments —Pure Tone Audiometry (PTA) and

QuickSIN — at the time of enrolling in the study. To the

best of our knowledge, this is the first study that predicts HA

outcomes based on EMA data that includes auditory context

information.

Using the collected data, we analyze the accuracy of pre-

dicting HA outcomes based on a patient’s auditory abilities,

HA configuration, and auditory contexts. We show that a

successful HA outcome for a new patient cannot be predicted

with odds better than chance based on the results of the
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PTA and QuickSIN tests. Incorporating information about

auditory contexts, however, increases prediction accuracy

to 68%. Collecting a small number of surveys from the

patient further improves the prediction accuracy to 90%.

Additionally, we have also considered the scenario of a

patient switching hearing aids. Specifically, we are interested

in predicting the HA outcome for the new HA when data

from the previous HA is available. In this case, a successful

outcome for the new HA can be predicted with an accuracy

of 86%.

The above results highlight the importance of collecting

patient information in-situ to predict HA outcomes. More

importantly, this points to the feasibility of prescribing a

mobile phone application along with the HA. Such an ap-

plication would allow audiologists to accurately predict the

likelihood of a patient becoming a successful and satisfied

HA user. Based on the feedback from our application, an

audiologist may take some remedial actions to improve the

likelihood of success including spending additional time to

council patients, suggesting HA that include more advanced

features to improve HA benefit, or encouraging participation

in aural rehabilitation/training programs. We note that the

efficacy of these interventions has not been studied in

literature as methods for assessing the patient’s likelihood

of becoming a HA successful user are still in their infancy.

II. RELATED WORK

Historically, studies of HA performance have been either

performed exclusively in the laboratory or combined labora-

tory tests with survey methods. However, several recent clin-

ical studies indicate that the benefit of HA technology (i.e.,

HA outcome) measured in the lab does not translate to the

real world [17], [3], [26], [25]. A potential explanation for

the observed differences is that the benefit of HA technology

is highly contextual. For example, the presence or absence of

visual queues during a conversation can significantly affect

the perceived benefit of HAs [26]. Since it is impractical

to capture such details accurately using traditional survey

methods, some audiologists are increasingly interested in

Ecological Momentary Assessment (EMA) [19]. EMA is an

established alternative to retrospective self-reporting meth-

ods that reduces the problem of memory-bias by collecting

data in the moment. Computer scientists have developed

a number of EMA systems [16], [11], [5]. In previous

work, we have developed AudioSense [9] – a system that

provides similar capabilities to existing EMA systems but

emphasizes collecting data relevant to audiologists such as

descriptions of auditory environments and sensor data (e.g.,

audio, GPS). The use of computerized EMA in Audiology is

in its infancy – aside from our prior work, only three other

studies have used computer-based EMA methods. Henry

et al. [10] and Wilson et al. [24] evaluated the impact of

tinnitus on daily lives of people and Galvez et al. [6] assessed

patient satisfaction with hearing aids.

Audiologists have evaluated the associations between a

number of HA performance indices and HA outcomes. A

primary focus has been on evaluating the association be-

tween measures that audiologists collect as part of standard

practice (e.g., PTA, QuickSin, or Acceptable Noise Level

(ANL)) and patient satisfaction. Recent studies show that

there is no or weak correlation between auditory ability and

HA outcomes [13], [23].

In [23] it was shown that PTA had virtually no corre-

lation with the measured HA outcomes and while a sta-

tistically significant correlation existed between outcomes

and QuickSIN, it was likely attributed to participant age.

Additionally, while ANL has been shown by some studies

to be an indicator of real world HA success [4], [20], others

have found no link [13]. Our analysis further validates that

HA outcomes cannot be predicted accurately based on PTA

and QuickSIN test scores.

In previous work [8], we characterized the auditory

contexts patients encounter in the real-world and made a

preliminary analysis of the relationship between contexts

and HA outcomes. Since the focus of the prior work was

to show the importance of auditory contexts, the models we

considered included patient and HA identifiers as features.

As a result, these prior models are not applicable to the

important clinical scenarios considered in this paper (when

one or both of the identifiers are not available). In this paper,

we consider for the first time the use of auditory contexts

to predict the HA outcomes of novel patients, novel hearing

aids, and novel conditions. Moreover, we show that it is

possible to achieve prediction accuracies as high as 90%

when a small amount of data in-situ is used. In the broader

context, our work points to the feasibility of incorporating

computer-based EMA as part of standard practice to improve

the successful use of HA.

III. FIELD STUDY

Participants for the study are recruited in three ways: (1)

the Department of Communication Sciences and Disorders

maintains a pool of potential participants and those who

match the study criteria are invited to participate, (2) through

word of mouth from participants of other studies, and

(3) hearing screenings. We recruit adults who are native

English speakers and at least 65 years old. The hearing

loss of participants is mild to moderate. Our participants

are further screened for adult-onset, bilateral, and symmetric

sensorineural hearing loss. At the time of analysis, 36

participants completed the study. The demographic details

are included in Table I.

Each participant completes six one-week sessions as in-

dicated in Table II. The order in which the participants

complete the session is randomized. Each participant started

by completing a weeklong training session (condition 99) to

get accustomed with reporting data using the mobile phone.

For hearing aided conditions (conditions 1 – 4), subjects
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Variable Statistics
Gender Male 50%

Female 50%
Age(years) Median: 73, Range: 65 – 88
Hearing loss onset(years) Median:8, Range: 1– 54
Duration of HA use (years) Median: 7, Range : 0 - 40

Table I: Demographic information of subjects

Condition HA use DM/DMR usage
0 Unaided –
1 Entry level Off
2 Entry level On
3 Premium Off
4 Premium On
99 Training

Table II: Study sessions

wore a HA for 1 month, followed by a one-week EMA.

After the EMA week, they start wearing the next HA (i.e.,

started the next condition). The participants wore either an

entry-level model or a premium level model. Both HAs have

adaptive directional microphones (DN) and digital noise

reduction (DNR) features. In the remainder of the paper, we

will refer to the combination of a patient and HA, or lack

of HA, as a condition. A subset of the patients volunteered

not to use their HAs for a week either in the beginning or

end of the study. The study was single blinded: participants

did not know which HA they used.

Hearing Assessments: The auditory abilities of each

participant were assessed using PTA and the QuickSIN tests.

The PTA test is designed to assess the hearing loss of study

participants. The test consists of presenting pure tones at dif-

ferent frequencies and amplitudes to determine the hearing

threshold for a selected set of frequencies. The participants

in our study suffer from mild to moderate hearing loss.

Accordingly, using PTA we found that patients had a hearing

loss of 25 – 60 dB HL in the speech frequency range

(0.5KHz – 4.0KHz). In addition to PTA, the participant’s

ability to discriminate speech in noise was evaluated using

the QuickSIN test. QuickSIN measures the SNR loss of

a patient compared to a normal hearing person. The test

works by presenting a set of standardized sentences that are

corrupted by varying degrees of noise. The test identifies

the SNR threshold at which the study participant is able to

identify 50% of the keywords in the presented sentence.

Auditory Contexts: The participants used the mobile

phone application to record the auditory contexts and asso-

ciated HA performance. The delivery of electronic surveys

is either alarm triggered or subject-initiated. Alarm-triggered

surveys are delivered using randomized schedules. After an

alarm is delivered, the time to deliver the next survey is

determined by adding a constant time offset Toffset to a

random number picked uniformly from the time interval

[0, Trand]. The time to deliver the first survey is determined

by the first time the application is started. The surveys in

our field study are delivered on average every 1.5 hours and

consecutive surveys were separated by at least 1 hour (i.e.,

Toffset = 1 hr and Trand = 1 hr). Moreover, in order to

minimize the burden of subjects, clinicians could select the

time interval during a day when surveys could be delivered.

To further mitigate the effects of the survey appearing at an

undesired time during the aforementioned interval, a Snooze
button was provided to delay the alarm by 30 minutes. An

alarm outside the delivery interval is postponed until the next

day. Additional details on AudioSense may be found in [9].

The mobile phone application characterized environments

in an exhaustive manner along three dimensions: activity

context, acoustic context, and social context. Each of the

various characteristics of the environment has been previ-

ously shown to impact HA performance either in the labo-

ratory or the real-world. Table III summarizes the questions

AudioSense asks the user. We note that in order to minimize

the reporting burden of our participants, the application only

presents the questions relevant to current auditory context of

the participant.

HA Outcomes: The application asked participants to eval-

uate the HA performance in the last 5 — 10 minutes prior

to the delivery of the survey. The evaluation is performed

across multiple dimensions. In Section IV-A, we show that

scores of each dimension may be combined to create a single

combined score that characterizes the HA outcome for a

given context. We will refer to this HA outcome measure as

the momentary HA outcome. The aggregate HA outcome

(or simply the HA outcome) of a condition is measured

by the average of the momentary HA outcomes. Existing

studies indicate that the relationship between aggregate

EMA measures and HA satisfaction obtained via surveys

to be inconsistent and variable [19]. The agreement among

researchers is that aggregate measures captured via EMA are

indicative of the actual experience whereas surveys measure

the participant’s perception [1].

Data Included: The data analyzed includes only the

conditions when the HA were used, excluding data from

the training and the unaided conditions. Additionally, as

part of every survey (including those delivered during aided

conditions) the patient is asked to confirm that they are using

their HAs. The surveys in which participants indicated that

they did not use a HA are excluded from the analysis. Two

participants out the 36 were excluded due to low response

rates. The resulting dataset includes 34 patients using four

different hearing configurations for a total of 136 conditions.

The dataset includes a total of 5671 surveys, each condition

including 41.7 surveys on average (range: 7 – 121).

IV. RESULTS

In this section, we characterize the accuracy of predicting

HA outcomes based on laboratory test scores, HA config-

urations, and information about auditory contexts. We are
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Dimension Variable Question
Activity
context

Activity type What were you listening to?
Location Where were you?

Acoustic
context

Noise level How noisy was it?
Noise location Where was the noise coming

from?
Talker location Where was the talker?
Room size How larger was the room?
Carpeting Was there carpeting?

Social
context

Visual cues Could you see the talker’s
face?

Familiarity Are you familiar with the
talker(s)?

Table III: Features included as part of auditory contexts

Dimension Variable Question
Perception Speech

perception (SP)
How much speech did you un-
derstand?

Listening effort
(LE)

How much effort was required
to listen?

HA satisfaction
(ST)

How satisfied were your with
the hearing aid?

Sound localiza-
tion (LCL)

Could you tell where sounds
were coming from?

Loudness (LD2) Were you satisfied with the
loudness?

Activity partici-
pation (AP)

How your hearing affected
what you wanted to do?

Importance Importance How important was it to hear
well?

Table IV: Measured outcome dimensions

interested in assessing both the performance of different

machine learning algorithms and understanding what are the

features that are necessary for making accurate predictions.

We consider the following clinically relevant scenarios that

differ in the information available for training and predicting

HA outcomes:

• Novel patient: A new patient is considered for hearing

amplification and her/his likelihood of becoming a

successful HA user is assessed using data from other

patients that use the same or a different HA.

• Novel HA: A patient is prescribed a new HA and

his/her HA outcome is predicted using the data col-

lected while using the old device. We consider the cases

when there are and when there are no other patients that

have used the newly prescribed HA.

• Novel auditory context: The momentary HA outcome

in a novel auditory context is predicted when there is

information about the patient’s use of her HA. This may

help clinicians identify the auditory contexts in which

a patient has a difficulty hearing.

The remainder of the section is organized as follows. In

Section IV-A, we consider the problem of creating a single

combined score from multiple HA performance measures.

The score is then used to determine whether a patient will

Patient ID
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C
B

 s
co

re

0

10

20

30

40

50

60

70

80

90

100

(a) Per patient distributions CB scores (condition=1)

(b) Distribution of CB scores

Figure 1: Statistics of CB and CB scores

SP LE ST AP LCL CB
SP 1.00 0.62 0.57 0.47 0.47 0.77
LE 0.62 1.00 0.61 0.64 0.51 0.89
ST 0.57 0.61 1.00 0.64 0.40 0.84
AP 0.47 0.64 0.64 1.00 0.32 0.83
LCL 0.47 0.51 0.40 0.32 1.00 0.48
CB 0.77 0.89 0.84 0.83 0.48 1.00

Table V: Spearman’s rank correlation between different

domains of HA performance

become successful a HA user or not. The different models

used for predicting HA outcomes are described in Section

IV-B. The results of applying the models in the context of

the above scenarios are presented and discussed in Section

IV-C.

A. Measuring HA Outcomes

HA outcomes are typically assessed across multiple do-

mains to better understand what factors have a negative

impact on the subject’s assessment of the HA. Our sur-

veys measure HA outcomes along six dimensions: speech

perception, listening effort, loudness, sound localization,
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HA satisfaction, and activity participation (see Table IV).

The correlations between performance domains are included

in Table V. Most performance domains have moderate

correlation indicating that they may be combined to create

a single momentary HA outcome score. An advantage of

this approach is that by combining scores the inherent noise

associated with measuring each dimension is reduced.

In prior work [9], we have proposed a method for creating

a combined score (CB). CB is computed in two steps using

the most correlated measures: SP, LE, ST, and AP. The

first step in creating a combined score is to construct the

following three mappings: f1 : SP �→ LE, f2 : ST �→ LE,

and f3 : AP �→ LE. We map SP, ST, and AP onto LE
because it has the widest score distribution, which allows for

better discrimination between HA outcomes. The combined

score (CB) is computed by taking the average of the LE
score and f1(SP), f2(ST), and f3(AP). The functions f1,

f2, and f3 are third degree polynomials whose coefficients

are determined using robust fitting.

Audiologists do not have an objective standard for dif-

ferentiating between successful and unsuccessful HA users.

Different methods have been used in the field such as

defining a minimum HA usage period per day [12], [15]

or using a threshold over an aggregate score [13]. CB is

a measure of the momentary HA outcome of a patient,

wearing a HA, in a specific auditory context. We consider

a condition (i.e., a patient using a given HA configuration)

to be successful if the mean CB scores of that condition

is higher than a threshold that is determined such that the

top-half of conditions are successful while the bottom-half

unsuccessful. We will use the notation CB to denote the

mean CB score of a condition.

A key challenge to accurately predicting the HA outcome

is the high variability of CB scores. Figure 1a plots the

distribution of CB scores per patient for condition 1. The

boxplots clearly indicate that the distribution of CB scores

varies significantly between patients, many patients having a

wide distribution of scores. The significant variability in HA

outcome scores may be partially explained by the differences

in the auditory context. Figure 1b plots the distribution of CB
scores (mean 73.2, standard deviation 12.3). The distribution

suggests that it might be easy to discriminate the outcome

of conditions at opposite ends of the scale, but this task

would be particularly challenging close to the threshold CB
≈ 76 (indicated in the Figure 1b as a black vertical bar) that

separates successful and unsuccessful conditions.

B. Models and Algorithms

We have evaluated the use of linear models, mixed mod-

els, and bagged trees to predict HA outcomes. The choice

of model is motivated by our desire to explore models of

different complexity and modeling assumptions.

The linear models that we use have the general form:

CBi = β0 +
∑

f∈F

βfI[f ] + εi

where i is the index of observation, F represents the set

of features included in the model, and I is the indicator

function. The residuals εi are normally distributed with zero

mean and variance σ2 (εi ∼ N (0, σ2)). The fitting process

determines the β parameters. A key challenge to fitting the

linear model is to determine what features to include in the

model. The set of features F is determined through step-wise

regression by incrementally adding features to the model

until no further improvement is possible. The quality of the

models is evaluated using t-tests.

Mixed models have been successfully applied to charac-

terize multi-level data. We may view the dataset as having

two levels that cluster data within patients and patients

within conditions. Mixed effect models allow us to construct

models that reflect the dependencies of the data associated

within the same statistical unit. The model has the general

form:

CBi,p,h =
∑

f∈F

βfI[f ] +
∑

p∈P

apΠp +
∑

(p,h)∈C

bp,hΓp,h + εi

where i is the observation index and indices p and h repre-

sent the patient and HA configuration of the ith observation.

The sets P and C include the patients and conditions of the

study, respectively. In addition to the fixed effects coeffi-

cients βf that are fitted similarly to the linear regression,

a mixed model also includes random effects. The matrix

Π represents the patients and matrix Γ the conditions that

have patient p nested in HA configuration h. The fitting

procedure determines the random effect coefficients ap and

bp,h. The procedure constrains the parameter vectors ap and

bp,h to be normally distributed such that ap ∼ N (0, σ2
p) and

bp,c ∼ N (0, σ2
p,c). A similar procedure to the one described

for linear models is used to select the features that will be

included in the model. Specifically, new features are added

to F as long as the model is improved while the random

structure of the model is fixed. For a review of linear mixed

models, we refer the reader to [7].

The last learning algorithm considered is bagged ensemble

of regression trees. An advantage of bagged regression trees

is that unlike the linear models they have built-in feature

selection. The bagging algorithm improves the overall per-

formance of regression trees by repeatedly sampling the

training data and constructing multiple regression trees. We

iteratively add more trees to the model until the improvement

of out-of-bag error falls below 1%. The out-of-bag error has

been shown to be a good indicator of the generalization error

of the algorithm.

The three algorithms predict the CB score as a continuous

response variable. To simplify the interpretation of results, in

the case of novel patients and HA, the continuous predictions
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Figure 2: Accuracy of predicting HA outcomes for a novel patient using data collected from other patients

are discretized. This is accomplished by computing the mean

of all predictions associated with a condition (i.e., the pre-

dicted CB). The condition is predicted to be successful if the

predicted CB ≥ 76; otherwise the condition is unsuccessful.

The reader may refer to Section IV-A for the methodology

used to determine the threshold value.

Each model is fit using different information to assess

which features must be included to achieve high accuracy.

Laboratory tests include the results from the PTA and

QuickSIN tests. The contextual information includes all

the survey information collected using AudioSense (see

Table III). We note that both the laboratory tests and

the auditory contexts include 6 continuous variables and

40 dummy variables that encode contextual information,

respectively. Additionally, some models include statistically

relevant interaction terms to capture the interaction between

pairs of features. Models are labeled using the convention

model=features, where the model may be linear L,

mixed model M, or bagged regression tree T. The features

may include laboratory tests (d), auditory context features

(x), or both. Baseline models may also include the patient

(p) and condition (c) identifiers when predicting novel

context.

C. Empirical Results

In the following, we present the results of applying the

models to the three previously discussed scenarios.

1) Novel patient: The most common scenario is that

of predicting the HA outcome of a novel patient based

on historical information collected from other patients. We

evaluate the performance of the machine learning algorithms

and models using leave-one-patient-out cross-validation. Ac-

cordingly, we consider a patient p and train the model

on all the data that does not involve patient p. Using the

constructed model, we predict the aggregate HA outcome

of patient p using the four HA configurations available

in the dataset. This process is repeated for all patients

in the dataset. During training, there are N − 1 patients

having information for each of the conditions. We note that

the models cannot include features that depend on patient

identifiers since directly estimating these features for the

novel patient is impossible (as none of its data is included

in the training set).

Figure 2a plots the accuracy of predicting the outcome

of patients for the different models. The worst performing

models are T=d and L=d that achieve prediction accuracies

of 46.3% and 53.7%, respectively. These models include

only the results of PTA and QuickSIN tests along with

potential interactions between these variables. For these two

models, we can predict with odds close to chance whether or

not a condition is successful. This result shows that measures

of auditory abilities are not predictive of real-world outcome

measures of HA success adding to the growing body of

evidence that support this conclusion.

Including information about the different contexts a pa-

tient experiences during her/his daily routine significantly

improves the prediction accuracy. The prediction accuracy

of models T=X, L=X, and M=X is in the range 61% – 66%.

A slight increase in prediction accuracy of 1 – 3% may be

achieved by combining lab results and context information.

These results highlight that HA outcomes cannot be eval-

uated without understanding the auditory context in which

they are measured. Accordingly, audiologists must transition

from retrospective surveys measurements to using comput-

erized EMA to capture such information. Furthermore, from

a clinical perspective, there is a significant benefit to collect

data from a patient in-situ to accurately predict her HA

outcome.
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To understand the importance of collecting data from a

patient, we allowed a small fraction of the patient’s data to

be used for training the models. The results are shown in

Figure 2b. The amount of data withheld for testing varies

from 50 – 100%; when the holdout fraction is 100%, the

results are the same as the ones discussed above and are

shown in Figure 2a. The graph clearly indicates that even a

small fraction of patient information can significant increase

performance. By moving from including no patient data to

including a mere 5% of the data for that patient, the best

prediction accuracy jumps from 68.4% to 85%. 5% of the

data translates to an average of 2 surveys (range: 1 – 6)

that must be completed by the patient. This highlights the

importance of collecting personalized information.

The models that perform best in the case when no patient

information is available are the simple linear regression

models. However, the performance of these models re-

mains relatively flat as more patient information is used for

training. This is because the linear models compute global

parameters that ignore grouping the data per patient or per

condition. The linear mixed models perform the same as

linear mixed models when making predictions for groups

that have no data included in the training set. This explains

the similar performance of linear and mixed models when

the all data of a patient withheld. However, as additional

information about patients becomes available, mixed models

may incorporate this information to make increasingly accu-

rate predictions. Similarly, bagged tree models can increase

the number of trees used in the model to achieve slightly

worse performance than mixed models.

2) Novel HA: Another important clinical case is what

happens when a patient changes their HA device. We

consider both the case when there is and when there is

no information associated with the new HA device in the

training set. The case when no information is available is

evaluated through leave-one-HA-out cross-validation. Ac-

cordingly, the data associated with a HA configuration is

retained for testing while the remaining data is used for

testing.

Figure 3a plots the accuracy of predicting HA outcomes

when no patient information is available for that patient. We

note that this case differs from the novel patient scenario in

that the training set includes some data for the considered

patient (i.e., when they used the other conditions). As

previously observed, the worst performance is that of models

that rely solely on laboratory test information. Their best

accuracy is 66.8%. Models that include auditory context

information perform overall better with a best accuracy of

85.3%. Including the both contextual and demographic infor-

mation results in increases in accuracy for all three models.

However, this increase can be significant: the trees models

have an increase of 16.1% to achieve the best accuracy of

88.2%. The higher accuracy in predicting novel HA than

novel patients may be attributed to the fact the training set
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(b) Novel HA, with the other patients having used the
HA

Figure 3: Accuracy of predicting HA outcomes when using

a novel HA

includes patient information that characterizes the auditory

style of the patient irrespective of the HA they use. An

alternative explanation is that the better accuracy is the

result of lower variability induced by different hearing aids

compared to the variability induced by different patients.

Figure 3b plots the accuracy of predicting the outcomes

for a patient and HA combination. In each experiment,

a patient and HA pair is withheld for testing while the

remaining data is used for training. Somewhat surprising,

the differences in the performance of the models between

Figures 3a and 3b are very small. This suggests that in our

study there is little that can be gained by considering the

scores of other patients that have used the same HA. This

result further bolsters the theme that there are significant

differences between patients.

3) Novel Contexts: The previous two sections focused on

predicting the aggregated HA outcomes (CB) for a condition

for novel patients or conditions. In this section we turn
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Figure 4: Accuracy of predicting the momentary HA out-

comes in novel contexts

our attention to the problem of predicting the momentary

rating (CB) that a patient would give to a HA used in an

auditory context. For this learning task, it is not sufficient to

accurately predict the mean CB score but instead to explain

the variability across different auditory contexts. We evaluate

the performance of different models and algorithms by using

5-fold cross validation. Each fold is constructed to ensure

that data from 4/5 of data of each condition is used for

training while the remaining 1/5 is used for testing.

Figure 4a plots the root mean squared error (RMS) for

different models. The results indicate that the models that

include just information about the patient and condition

performs the worst. This is because these models can only

predict accurately the average CB scores and are included

in the graph as baselines. The models that include only the

results of laboratory tests have similar performance to the

baselines since they do not characterize the contexts in which

HAs were assessed. The models that include contextual

information overall achieve better performance showing that

it essential to include contextual information if we want to

accurately predict momentary HA outcomes. The models

that combine both laboratory tests and auditory context

information achieve the lowest RMS error.

To get a better understanding of the size of the errors

observed for a given patient and condition, we standard-

ize the errors with the respect to the mean and standard

deviation of the samples associated with that patient and

condition. This is necessary to allow us to aggregate the

results across different patients and conditions since these

distributions differ significantly in their means and standard

deviations. Figure 4b plots the distribution of z-scores for

each mixed effect model. Consistent with the RMS errors,

the worst performance is observed when only demographic

information is included. In this case, the median z-score

error is 1 indicating that on average the model makes an

error equal to one standard deviation. In contrast, the best

performing model that includes information from both lab

tests and auditory contexts reduces almost in half. This

highlights the need to integrate both features from lab tests

and contextual information to achieve high performance.

V. CONCLUSIONS

This paper considers the problem of measuring and pre-

dicting HA outcomes in the real-world in order to provide

audiologists a new method to improve the low satisfaction

rates of HA users. Measuring HA outcomes in the real-world

is particularly challenging as it is affected by multiple factors

including a patient’s auditory capabilities, HA configuration,

and auditory context. This is the first audiology dataset that

jointly measures the auditory context and the associated

HA outcomes. Computerized EMA enables us collect fine-

grained information about auditory contexts including the

type of listening activity, characteristics of the acoustic

environment, and their social context. The collected dataset

includes 5671 surveys collected from 34 patients using four

different HA configurations. The surveys are complemented

by laboratory assessments of hearing loss for each patient.

We have analyzed the ability to predict HA outcomes in

three clinically relevant scenarios: novel patient, novel HA,

and novel contexts. In order to identify the features that

are important to achieve high prediction accuracy, we built

models with different features and fit them using linear mod-

els, mixed models, and bagged trees. Our analysis indicates

that we cannot predict the HA outcome of a novel patient

with likelihood better than chance using only laboratory

measurements of hearing loss. In contrast, incorporating

information about the auditory contexts that characterize the

auditory lifestyle of the patient increase prediction accuracy

to 68.4%. It is possible, however, to achieve accuracy rates

as high as 90% when some information about a patient

is collected in-situ. We can predict the HA outcome of a

patient using a novel HA with an accuracy of 85% leveraging
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information about her auditory lifestyle collected using the

previous HA. We also provide results for predicting the

momentary HA outcome after collecting some data from

the user. Our best model can predict the combined HA score

with a median error of a half a standard deviation from the

condition’s mean.
The presented results demonstrate the feasibility of pre-

dicting HA outcomes with high accuracy. However, this

requires that patients collect in-situ information about their

auditory lifestyle (i.e., the auditory contexts) and the asso-

ciated HA performance. This suggests that a mobile phone

application should be prescribed to HA users to determine

whether they will become successful HA users. AudioSense

is designed for research and, as a result, it introduces a

significant data collection burden that cannot be justified

outside this setting. In the future, we will explore methods

of reducing the data collection burden to enable the devel-

opment of an application that clinicians may use.
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